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Abstract—This paper presents a summary of the articles
[12][8], describing how a dynamic epistemic logic framework
can be used for epistemic planning in games. First of all, we
introduce important notation and concepts of dynamic epistemic
logic. Secondly, an implementation of a minimalistic example
of the game Thief: The Dark ProjectTM is presented. Finally,
we utilize game theory to devise optimal strategies, considering
different outcomes based on randomly occurring events.

I. INTRODUCTION

We show how dynamic epistemic logic can be used to
model agents in a computer game to attain more human like be-
haviour. This is done by presenting the work and toy example
of [12] followed by an implementation in AgentSpeak. A more
accessible introduction to epistemic logic is included and the
behaviour of the event models is covered in more detail. Using
elements from game theory, we analyze the agents’ information
and options in the game, devising a strategy for the agents to
reach the optimal outcome.

A. Outline of this paper

In § II the necessary notation and concepts for dynamic
epistemic logic (DEL) is introduced. It includes a definition
of epistemic logic which is then extended to DEL in § III by
describing the action model of which three specific instances
are covered: secret message, private messages and public
announcements. We then proceed in § IV to model a toy
example inspired by the computer game Thief with higher-
order knowledge possible to capture in DEL. We include
an implementation in AgentSpeak and discuss the limitations
compare to the DEL powered knowledge module. Finally in
§ V a game theoretical interpretation of scenario is considered
that discusses the strategy developed in § IV. This provides a
framework for modelling the probabilistic behaviour of nature
and analyze a sequence of actions. In § VI we close with
pointers to modelling belief and planning longer sequences.

II. EPISTEMIC LOGIC

Epistemic Logic is the logic for reasoning about knowl-
edge. It concerns itself with the knowledge of multiple agents
in a system where agent should be understood in a broad sense
to include not only people but also robots and even components
in a computer system. It models agents knowledge about facts
as well as knowledge about other agents knowledge referred
to as high-order knowledge. The concepts will be introduced
using a combination of the notation used by [9] and [6].

A. Epistemic Model

The key idea behind epistemic logic is that of possible
worlds. An agent is informed of ϕ if it is true in the range of
possible worlds accessible from the current world. To make
these notions precise an epistemic model is defined.

Definition II.1. Epistemic model (possible world model) An
epistemic model M for n agents over a set of atomic propo-
sitions Φ is a tuple M = (S, π,K1, ...,Kn) satisfying,

1) S is a non-empty set of states (i.e. worlds).
2) π which for every state associates a truth assign-

ment to the propositions, s ∈ S, π(s) : Φ →
{ true, false }.

3) Ki is a binary relation on S for every i ∈ A which
is called an accessibility relation.

The model is used to depict what worlds are accessible and
what holds in those worlds. It is however beneficial to consider
a specific world and use the accessibility relations from this.
This specific scenario in our model will be referred to as a
Pointed possible world model.

Definition II.2. Pointed possible world model A pointed possi-
ble world model is a pair (M, s) where M = (S, π,K1, ...,Kn)
and s ∈ S.

This model can capture the knowledge of the agents in the
modelled situation. To express more clearly what is known a
propositional modal language LEL is introduced as defined by
the following grammar.

Definition II.3. Language LEL

LEL : ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ,

where > is a tautology, p is a atomic proposition p ∈ Φ,
A = { 1, ..., n } is a set of agents, and i ∈ A.

This can simply be seen as an extension to propositional
logic with the additional modal operator Kiϕ which reads as
agent i knows that ϕ. The rest of the connectives (∨,→,↔
,⊕, ↑, ↓) can be expressed based on negation and logical and
as usual [1, Theorem 2.36].

This language can be used to describe what is true in a
particular scenario. If ϕ ∈ LEL then we express that ϕ holds
in the world s by (M, s) � ϕ. The semantics of the language
makes this precise.

Definition II.4. Semantics for LEL.

(M, s) � >
(M, s) � p iff π(s)(p) = true

(M, s) � ¬ϕ iff (M, s) 2 ϕ
(M, s) � ϕ ∧ ψ iff (M, s) � ϕ and (M, s) � ψ
(M, s) � Kiϕ iff for all v with (s, v) ∈ Ki, (M,v) � ϕ

Definitions for concepts such as common knowledge are
left out for simplicity since they can be defined in terms of the
modal operator. To provide an intuition of these semantics an
interpretation of the semantics in natural language is helpful.



1) Kiϕ: agent i knows ϕ.
2) ¬Kiϕ: agent i does not know ϕ.
3) ¬Ki¬ϕ: agent i considers ϕ possible.
4) ¬(Kiϕ ∧Ki¬ϕ): agent i does not know whether ϕ

or not ϕ.

B. Kripke Structure

The epistemic model is what is called a Kripke structure in
model checking which has a useful graphical representation.
Each state is a vertice in a graph connected by edges which
are the accessibility relations. In our description of the model
vertices, state and world will be used interchangeably. The
label of state s ∈ S describe what truth assignments the atomic
propositions has in that state. In a pointed world model the
pointed vertice will be indicated by a double border of which
an example can be found on figure 1a.

Note that it is common to assume that the accessibility
relation is an equivalence relation. That is the relation is,

• reflexive, which is that if s ∈ S then (s, s) ∈ K,

• symmetric, which means that for all s, t ∈ S we have
(s, t) ∈ K iff (t, s) ∈ K, and

• transitive, which means that for all s, t, u ∈ S if
(s, t) ∈ K and (t, u) ∈ K then (s, u) ∈ K.

This means that the graphical representation used will
leave out edges implicit by this assumption. However, we
will not assume reflexivity since leaving out this property
will be useful will constructing actions later introduced. For
consistency reflexive relations will also be made explicit in
epistemic models.

III. DYNAMIC EPISTEMIC LOGIC

Dynamic Epistemic Logic (DEL) provides a well-defined
way of updating the epistemic model based on so called event
models. It consists of three parts of which the first have already
been covered: 1) an initial epistemic model 2) an event model
and 3) a product update operator. It is based on the work by
[8] but adopts the style of notation from [6].

A. Event Model

An event model E is a tuple E = (E,Pre,Ri, ..., Rn)
where E is the set of events, Ri ⊂ E × E is an accessibility
relation for each agent i ∈ A, and Pre : S → LEL is the
precondition.

Note how it is structurally similar to an epistemic model.
The difference will show in how it is applied in the product
update.

B. Product Update

Product update is an operator that produces a new epis-
temic model based on an event occurring in an initial epis-
temic model. Formally, given an epistemic model, M =
(S, π,K1, ...,Kn), and event model, E = (E,Pre,Ri, ..., Rn),
a new model is defined as,

M ⊗ E = (S′, π′,K′
1, ...,K′

n)

where,

1) S′ = { (s, e) | s ∈ S, e ∈ E, (M, s) � Pre(e) },
2) π′((s, e)) = π(s) and
3) ((s, e), (s′, e′)) ∈ Ri iff (s, s′) ∈ Ki and (e, e′) ∈

Ri for i ∈ A.

Informally this reads that a world (si, ej) is only persisted
in which the precondition is met. Further, an accessibility
relation only exists if it also existed in both the initial epistemic
model and event model.

To obtain the language for dynamic epistemic logic we
extend LEL with a modal operator 〈E , e〉. The semantics for
these modalities are then,

(M, s) � 〈E , e〉ϕ iff
(M, s) � Pre(e) and (M ⊗ E , (s, e)) � ϕ

C. Locked Box Example

Let us consider an example to get a better intuition of how
to design the event model and how the product update works.
Suppose a box exists with two possible combination to open
it, c1 and c2. In our model two agents exists, i and j, where
i is the only one that knows the combination which is c1.
We can describe this static situation with the epistemic model
expressed by the Kripke model in figure 1a.

We can verify that it has the desired properties by eval-
uating different formulas. First it is clear that i knows the
combination for any pointed world model since there is no
accessibility relation between the two states. However, because
(s1, s3) ∈ Kj j will always consider both a world in which c1
and one in which c2.

The formalization has clarified certain points that were
ambiguous in the natural language formulation. It is explicit
in the model that j knows that i knows the combination
(formally Kj(Kic1 ∨Kic2)). The interpretation also includes
the assumption that only one combination exists. In other
words that no world exists in which both π(c1) and π(c2) are
either true or false. These two worlds are left out for simplicity
since they have no accessibility relations with the other worlds
and are not the pointed world considered. It would be possible
to capture the model with one propositional atom where the
negation would indicate that the second key was the case.
However, this provides a slightly more complicated example
to express the graphical representation.

How this model can be updated will now be addressed. This
is done by constructing event models which leads to specific
outcomes by application of the product update.

1) Secret message: A useful notion is that of a secret
message which informally is an event in which an agents
learns a fact without other agents being informed. In the
context of the locked box example say j learns the combination
without agent i’s knowledge. To be precise, this implies that
Kj(c1 ∧ ¬c2) and ¬Ki(¬Kj(c1 ∧ ¬c2)) should hold in the
resulting pointed world model. An event model that contains
this event is captured in figure 1b which reasoning behind
will now be explained. First, note that the precondition in
the pointed event e1 matches the interpretation of c1 in the
epistemic model. No accessibility relations exists for j from



this state except the reflexive relation. This captures that j will
considers no other world than the ones in which c1 ∧ ¬c2. In
contrast i only has relations to all other states (in this case e2).
Since the precondition Pre(e2) is always true (expressed by
>) i will consider all worlds possible in the updated model for
which i also considered them possible in the initial epistemic
model. Finally note that e2 expresses the event in which j was
not informed. In this case j knows that j was not informed
which is captured by the lack of an accessibility relation to
e1. However, if e2 occurred agent i still considers worlds in
which e1 occurred (i.e. let S′ be the all worlds consider in S
then S′ × E are considered).

This is an informal explanation that only provides a hand-
wavy reasoning behind the event model. To ensure that it
behaves as expected the resulting model M ⊗ E should be
constructed and the desired formulas evaluated in the pointed
model (M ⊗ E , (s1, e1)) which can be found on figure 1c.
First note that the property of i’s certainty of the state either
consisting of s1 or s2 is preserved as is clear from the lack
of accessibility relations. Secondly the sub graph containing
vertices (s1, e2) and (s2, e2) is isomorphic to the initial Kripke
structure M (made explicit in figure 1c by coloring). So the
updated structure models the same situation as before if e1 is
not in the pointed world. Now consider the remaining state
(s1, e1) which is the most interesting since this is the actual
scenario, i.e. from this state our initial requirements for the
event should hold by applying the semantics. The agent j only
has a reflexive connection from (s1, e1) so he correctly only
considers a world in which c1 ∧¬c2. Verifying i’s knowledge
similarly ((s1, e1), (s1, e2)) ∈ K′

i captures both knowledge of
the event is unknown to i by only considering (s1, e2) and that
i knows c1 ∧ ¬c2.

2) Private message: The structure of a private message
is very similar to that of a secret message. Private messages
differs only by additionally capturing that other agents knows
the recipient has received a message. This is formalized
by removing (e2, e2) from the accessibility relation of i in
the secret message event model as exemplified by figure 2.
Expressing the situation in the modal language initially if j
does not know about ϕ then Ki(¬Kjϕ ∧ ¬Kj¬ϕ). However,
after the message has been parsed to j, i is also informed
about the knowledge acquisition, so Ki(Kjϕ ∨Kj¬ϕ) holds
in pointed model.

3) Public announcement: As a last example it is shown
how to model the concept of public announcement where every
agent acquires a fact. The simple event model can be found
on figure 3. It simply works by effectively filtering out worlds
in which the precondition for e1 is not met but leaving all
accessibility relations.

4) Other messages: A more complete picture of possible
standard messages including e.g. group messages can be found
in [4][5]. This includes the generalization of the covered
messages.

All knowledge acquisition has so far considered an all-
knowing oracle, i.e. the sender is ’outside’ the model. For
message parsing that includes agency we refer to [10] which
uses a history-based approaches to also include past events.
DEL is sufficient for capturing the scenarios discussed in this
paper.

D. Limitations of Dynamic Epistemic Logic

As seen dynamic epistemic logic allows one to update the
knowledge about facts and knowledge about knowledge in a
model. It does not however allow for changes to the facts
themselves (i.e. the interpretation π(s) in each state s). This
is a possible extension to the product update that is only left
out for simplicity.

A more serious concern is that the updated model after a
secret message cannot be further updated in any meaningful
way to inform i that j knows c1. To manage this we could
model beliefs which can be false compared to knowledge. This
can be done with dynamic doxastic logic but DEL works for
the toy-examples discussed.

This event based approach will allow us to model the
possible sequences of actions in a game as is covered in the
subsequent section.

IV. THIEF: THE DARK PROJECT

A classical toy example when considering epistemic plan-
ning, is the video game Thief: The Dark ProjectTM by Eidos
Interactive (1998). The player, being the thief, avoids being
detected by guards, exploiting their possibly mistaken beliefs
about the thief’s presence. This game can be extended to
epistemic logic, by having the guards include beliefs about
what the thief believes, and beliefs about what the thief
believes he believes.

A. Scenario

To illustrate this extension we consider a minimalistic ex-
ample scenario with a thief and a guard, and a limited number
of possible events. The possible events are the following:

• nt/ng : The thief/guard makes some noise.

• st/sg : The thief/guard is seen from behind.

• f : The thief and guard face each other.

of which the epistemic effects are:

• nt : The guard learns that the thief is present. The
thief learns that if a guard is present, the guard learns
that the thief is present.

• st : The guard learns that the thief is present, while
the thief believes nothing has happened.

• f : The thief and the guard commonly learn that both
are present.

The effects of ng and sg are analogous.

As a simplification, all events to occur with a probability,
such that we do not consider the actual whereabouts of the
characters involved. We also assume that the thief and the
guard become aware of the each others presence if they hear a
noise they did not cause themselves. Furthermore, if the thief
makes a noise, the guard will indeed hear it, and the thief will
know that the guard knows.

This scenario can be formalized in DEL, using the atomic
propositions pt and pg , denoting that the thief and the guard is
present respectively. Let I be the pointed model of the initial
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Fig. 1: Locked box example for dynamic epistemic model
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Fig. 2: Private message event model for j in locked box model.
Note similarity with figure 1b.

i, j

Fig. 3: Public announcement in locked box model

situation, and the set E = {Nt,Ng,St,Sg,F} be pointed
event models of the events described above. A graphical
representation of these pointed event models is depicted in
figure 4.

B. Epistemic Planning

Artificial intelligence is used in games to create more life-
like non-player characters (NPCs), for instance by introducing
goals and ways of realizing them. One of those AI engines
is the Radiant AI used in the role-playing game The Elder
Scrolls: OblivionTM (Bethesda Softworks 2006), where each
individual NPC has a goal or purpose to fulfill. This approach
is however limited in terms of epistemic reasoning, which was
quite evident during the testing phase of the game AI:

One [non-player] character was given [by the testers]
a rake and the goal ”rake leaves”; another was given
a broom and the goal ”sweep paths”, and this worked
smoothly. Then they swapped the items, so that the
raker was given a broom and the sweeper was given
the rake. In the end, one of them killed the other so
he could get the proper item. [12]

By introducing a notion of epistemic knowledge, and being
able to act upon that knowledge, these two NPCs could simply
swap items instead of resolving to violence.

In our scenario on the other hand, violence is the only
option, and the thief and the guard have three possible attacks
to perform depending on the situation:

• ambush, with precondition pt ∧ ¬Ktpg .

• trick, with precondition pt ∧Ktpg ∧ ¬KtKgpt.

• rush, with precondition pt ∧KtKgpt.

for the guard, and analogously for the thief. Note that the pre-
conditions for rush can be simplified to common knowledge
about both agents being present (Cpt ∧ Cpg).

The guard prefers to ambush the thief, however if the guard
suspects that the thief has noticed him (the guard), he can try to
trick the thief by playing stupid. Doing so will only work if the
thief does not know that the guard has noticed him (the thief),
having a face-to-face encounter as last resort. To successfully
ambush the thief, the guard has to avoid making any noise or
being seen while sneaking up on the thief. As the events are
out of the agents’ control, they have to re-plan accordingly
when an event occurs and their knowledge is updated.

An example run of the scenario goes as follows:

1) The thief is seen by the guard (st). The guard plans
on ambushing the thief.

2) The guard suddenly makes a noise (ng). Now the
thief knows the guard is present. Since the thief does
not know that the guard has noticed him, he plans on
ambushing the guard. Meanwhile, the guard knows
he has been noticed, thus re-plans by trying to trick
the thief instead.

3) The thief makes a noise as well (nt). At this point
they both know they are aware of each others pres-
ence, resulting in face-to-face combat by rushing
towards one another.

A more complex and realistic example would include the
triggering of events, such that the guard can intentionally make
a noise (ng), let himself be seen from behind (sg) and step
out to provoke a face-to-face encounter (f ). As a result, there
would be multiple applicable plans for the guard after noticing
the thief. For instance, he could potentially plan to make a
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Fig. 4: Pointed event models for the initial situation and the possible events. Bidirectional accessibilities are represented by
undirected edges, and reflexive accessibilities are implicit in models without directed edges.

noise and try to trick the thief (P1 = ng, trick) or simply
ambush the thief (P2 = ambush). In both cases, there are
several events the guard should avoid in order to successfully
execute his plan. In case of P1, the guard must avoid them
facing each other, and more delicately, the guard must avoid
having the thief make a noise (nt). If the thief makes a noise,
the thief will immediately learn that the guard is aware of his
presence, and the guard will not be able to trick the thief. In
the simpler case P2, the guard must avoid even more events,
namely being seen from behind (sg), making a noise (ng)
and having them face each other (f ). By considering all plans
ending with one of the attack actions up to a certain length, the
space of potential plans is still of manageable size, however
for more advanced examples, the planning space can quickly
become unfeasible.

C. Implementation

The simple Thief example is implemented in AgentSpeak,
a logic based agent-oriented programming language used to
model agents’ beliefs, desires and intentions. Its grammar
is similar to Prolog, having capitalized words and letters as
variables, and non-capitalized as literals with arguments or
simply atoms. Each agent has a belief base, comprising atoms
and literals, which is modified through occurring events and
by executing plans. Plans and events are defined by a name,
[(arguments)], [: preconditions] and [<- postconditions], using
the following syntax (elements enclosed with [] are optional):

+!name(argument, ..., argument) :
precondition & ... & precondition <-
postcondition; ...; postcondition.

The difference between plans and events are the in-
clusion of ! in front of the plan name as seen in

the code above, since plans are executable by agents as
!name(argument, ..., argument). The actions a
guard can perform to attack the thief can then be modelled
using the following plans:

+!action(ambush) : p(t) &
not know(t, p(g)).

+!action(trick ) : p(t) & know(t, p(g)) &
not know(t, know(g, p(t))).

+!action(rush ) : p(t) &
know(t, know(g, p(t))).

+!action(none ).

such that !action(A) will try executing all AgentSpeak
plans matching the name and the argument count top down
until one of the plans succeed. If the guard’s belief base com-
prise p(t) and know(t, know(g, p(t), the variable A
will be unified with rush, being the first applicable plan from
the top. Note that none of these actions are defined with any
post-conditions, since we are only interested in the planning
and reasoning with regards to high-order beliefs.

The guard is unable to observe the event in which the thief
sees him from behind (seen(g)), thus all events he consider
possible are modelled as follows:

+noise(t) <- +p(t);
+know(t, know(g, p(t))).

+noise(g) <- +know(t, p(g)).
+seen (t) <- +p(t).
+face <- +p(t); +know(t, p(g));

+know(t, know(g, p(t))).

such that +belief(B) will add the literal to the agent’s
belief base. As seen above, the face event acquires the most



knowledge, having the guard learn that the thief is present; that
the thief knows the guard is present; and that the thief knows
that the guard knows he is present. Note that the addition of
beliefs correspond to the epistemic effects of the events (from
the guard’s perspective) given in the scenario description.

Having a third almighty entity, nature, randomly mak-
ing events occur each step, the guard and the thief will
simultaneously plan their actions according to their cur-
rent knowledge. As no actions have post-conditions, they
will continue re-planning until they commonly learn that
both are present, resulting in the inevitable face-to-face
encounter were both agents rush towards one another.
The example run of the scenario described in the pre-
vious section can be produced with the following out-
put, given that the same events occur in identical order.

[nature] seen(t)
[guard] ambush
[thief] none

[nature] noise(g)
[guard] trick
[thief] ambush

[nature] noise(t)
[guard] rush
[thief] rush

While this example shows the
results of epistemic reasoning
in games, the next step would
be to extend the implementation
to include triggerable events in
agents’ action repertoires, allow-
ing for more sophisticated plans.
By doing so, the characters would
be able to act more life-like, facil-
itating the surrounding environ-
ment to achieve their goals (fu-
ture work).

This extension does however require a notion of executable
events, which AgentSpeak does not provide. To do so, the arti-
cles [12][8] propose the use of a knowledge module, managing
epistemic effects similar to how physics engines manage the
laws of physics in games. This module is effectively a DEL
model. Doing so, epistemic formulas can be evaluated and
their effects interpreted, giving NPC scripters a black box to
directly use notions of belief and knowledge in their programs.
However, for the implementation to remain tractable, a certain
subclass of formulas needs to be identified as relevant, thus
implementing a full human-like knowledge module is out of
the question.

D. DEL Planning Limitations

Having established itself as a standard conceptual model
for epistemic situations and change, DEL makes a promising
framework representing the knowledge- and belief-based parts
of computer games. DEL planning problems can easily be
defined for single-agent scenarios, assuming no interfering
actions of other agents, and adversarial scenarios assuming
complete opposition. More interestingly however, is a general
strategic DEL planning problem, where agents take actions
of other agents into account, and may to some extent try to
anticipate them. Existing work attempts to do so by modelling
goals and preferences [11], although these scenarios are far
less clear, and requires more thorough research.

The main technical issue that arises, is that in general
it may be unfeasible to solve the DEL planning problem
altogether. The search space can easily be infinite, or even too
large if it is not. In multi-agent epistemic planning problems,
there is in general no upper bound on the size of the reachable
epistemic states, and is undecidable even without common

Intial

NOACTION

pt

¬Ktpg

¬KtKgpt

KtKgpt

AMBUSH

TRICK

RUSH

Fig. 5: Decision tree for the guard based on his believes about
the world. Each layer in the tree should be read top to bottom,
and the first applicable action should be chosen. The decision
tree for the thief can be created analogously.

knowledge [3]. One of the most studied problems in epistemic
planning based on DEL is the complexity of the plan existence
problems. The plan existence problem is a decision problem
regarding a class of planning tasks X , and whether there exists
a solution to a planning task Π for Π ∈ X . The problem is
already undecidable with two agents, no common knowledge,
and even without post-conditions [2].

V. GAME THEORY

The progress of this game is based on the different events
described happening randomly. Each of the agents in the
scenario does not have any control over the events that they
make a noise, see the other agent, or see each other, and are
therefore modelled as random events that will occur with given
probabilities. The agents themselves can therefore only try to
respond with appropriate actions to their own favor when they
acquire knowledge about the world.

As such, which decisions the guard and thief should take
in this game depend only on which world they believe they
are in. As mentioned earlier, the general planning problem
quickly becomes undecidable. Hence to create a valid plan,
the agents should use a greedy strategy that will give them
the best outcome. In figure 5, the decision tree for the guard
is illustrated (the thief’s being similar). This decision tree
describe each of the actions the guard is capable of, and
the priority of their execution from top to bottom, based the
guard’s knowledge of the world. The guard will start in a
initial state. If he does not know the thief is present, the guard
will do nothing. However, if the guard does, which action he
should perform depends on what he knows about the thief’s
knowledge.

If the guard knows that the thief does not know the guard is
present (Kg¬Ktpg), the guard is allowed to ambush the thief.
If the guard instead knows that the thief does not know that the
guard knows the thief is present (Kg¬KtKgpt), the guard is
able to trick the thief. Lastly, if the guard and thief commonly
knows the other is present, they have no other option than to
rush each other.

This model does create one problem: if both agents have
seen each other from behind (both st and sg have occurred),
they mutually know the other agent is present, but also that the
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Fig. 6: Illustration of a step in the game, where both players
have no prior knowledge. The order of the thief and guard are
indifferent.

other agent is not aware of their own presence. This is false
knowledge, which should not be possible. It would result in
both of the agents trying to AMBUSH the other, which is a kind
of paradox and should be impossible. Because of this, all of
the agents’ knowledge should instead be modelled as beliefs,
meaning knowledge that can be false. However, for simplicity
this will be disregarded.

A. Planning without prior knowledge

One step in the game can be modelled by letting nature
take actions before both of the players turn. The actions taken
by nature will correspond to the events that can happen in the
game: either of the players makes noise, see the other, or they
see each other. To simplify the game, it is assumed only one
of these events can happen in each step, each of which will
happen with some probability. In figure 6 one step of the game
is modelled, where it is assumed that none of the players have
any prior knowledge. Because of this assumption, the tree does
not catch the trick outcome, as this would require one of the
players to know that the other one is present. Note that in
figure 6 every node has an implicit NOACTION, but both to
keep the figure simple and because the NOACTION-strategy
is weakly dominated by the strategy presented in the figure,
these have been left out.

In the game, the players can take actions simultaneously.
However, the situation is transformed into a sequential model,
with either of the players doing their action first, without
reflecting on the action taken by the other player. Hence the
tree in figure 6 could just as likely have the order of the thief
and guard switched.

Based on the different actions each of the agents can
perform, the outcome is scored accordingly. The score is
depended on which attack is selected to perform. Ambushing
the other agent will give the highest probability of a kill,
especially if the agent being ambushed have no idea that the
other agent is present. Rushing the other agent gives a worse
chance of winning, but is still better than doing nothing. Being
attacked is always scored the same negative value.
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Fig. 7: Illustration of a step in the game, where everybody
already knows that the guard is present. The order of the thief
and guard are indifferent.

B. Planning with prior knowledge

In the previous model it was assumed that the agents had
no prior knowledge. To describe more advanced situations,
the game tree from before have to be extended to handle
knowledge from previous steps. There are three situations to
analyze: no knowledge from previous step, both agents have
learned that the other is present, and one agent has learned
that the other is present, while the other has not. Of course
more complex knowledge could transfer between steps, such as
knowledge about the other agents knowledge, but the outcomes
of these transfers can also be found in the following model.

The first two cases are trivial. If there is no knowledge
from the previous step, the situation is the same as before,
and the model from before describes this situation. Secondly,
if both have learned the presence of the other, there is no more
information for them to learn.

The interesting case is when one of the agents have
learned that the other agent is present, but the other has
not learned anything, as illustrated in figure 7. Many of the
situations remain the same, however, looking at the case were
nt happens, the thief is now able to TRICK the guard because
of its knowledge of the guards presence. The second interesting
case is when no event happens, as the thief will still be able to
perform an AMBUSH action. However, as mentioned earlier,
this creates the situation where both agents will try to AMBUSH
the other. However, despite this figure 7 also shows that the
thief is in a quite superior position, after learning the presence
of the guard.

C. Information categories

For both of the agents in the scenario, some states are
indifferent. Both of the agents are unable to distinguish be-
tween the situation where nothing has happened and where
the other player has seen them from behind. In figure 6,
the thief sees state 3 and 4 as the same, while the guard
is indifferent between state 9 and 11. Hence the game is of
imperfect information. In the second model, figure 7, the thief



does have the same information in state 5 as in state 4 and
3, making these states essentially the same from the thief’s
point of view. However, because the thief have seen the guard
a second time, the thief should be able to distinguish these
events, as it have had its knowledge confirmed. It also informs
the thief that the guard did not see the thief from behind, which
is useful information to the thief.

Agents also have asymmetric information in the game,
primarily because they do not know if the other is present,
but also because agents are able to see the other without the
other agent knowing. As nature moves first, and both players
are not always able to see the action it takes, the game is also
of incomplete information.

In the single step version of the game, the agents have
certain information, as nature does not take any actions after
the agents, thus the outcome is deterministic. However, this
only models a single step in the game, which might not
be enough to end the game. This single step model could
therefore be repeated until a resolution of the game is found,
with knowledge carrying over between each step, making the
information uncertain.

VI. CONCLUSION

Having introduced notation and concepts for dynamic epis-
temic logic, we were able to apply these concepts to a simple
game and analyze it in terms of possible outcomes. DEL
allows us to model epistemic situations and change, defining
event models and product update to represent the effects of
epistemic events. The game comprise several of these events,
each resulting in different knowledge for the agents involved,
being able to utilize the acquired knowledge to defeat their
opponent. By analyzing the game, we were able to identify the
superior strategy in the simplified scenario, where we only plan
one step ahead. A natural extension would be to implement and
analyze the extended scenario, where events are included in the
agents’ action repertoires. As a result, the agents would have
improved planning capabilities, allowing for more interesting
game strategies and outcomes. Furthermore, by introducing
specific probabilities to different events, say the thief is not
very discrete or the guard always makes noise, the strategy
would have to be changed accordingly.

A generalized DEL framework would simplify this exten-
sion, by using a knowledge module keeping track of event
models and updating them accordingly when events occur.
However, most interesting applications are not about knowl-
edge, but rather about belief, and further work would include
developing a framework for dynamic doxastic logic as initiated
by Kennerly et al. [7].
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